On strongly convex projectively flat and dually flat complex Finsler metrics
نویسندگان
چکیده
منابع مشابه
On a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
متن کاملOn dually flat Randers metrics
The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...
متن کاملOn dually flat general $(\alpha,\beta)$-metrics
Based on the previous research, in this paper we study the dual flatness of a special class of Finsler metrics called general (α, β)-metrics, which is defined by a Riemannian metric α and a 1-form β. By using a new kind of deformation technique, we construct many non-trivial explicit dually flat general (α, β)-metrics.
متن کاملOn a Class of Two-Dimensional Douglas and Projectively Flat Finsler Metrics
We study a class of two-dimensional Finsler metrics defined by a Riemannian metric α and a 1-form β. We characterize those metrics which are Douglasian or locally projectively flat by some equations. In particular, it shows that the known fact that β is always closed for those metrics in higher dimensions is no longer true in two-dimensional case. Further, we determine the local structures of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2018
ISSN: 0047-2468,1420-8997
DOI: 10.1007/s00022-018-0445-z